Data Engineer

Posted 03 February 2026
Salary Competitive
LocationReading
Job type Contract
Discipline Data & AI
Reference76140
Remote working Hybrid/Flexible

Job description

Job Title: Senior Data Engineer

Location: UK (Hybrid, 2–3 days per week in-office)

Rate: £446/day (Inside IR35)

Contract Duration: 6 months

Additional Requirements: May require occasional travel to Dublin office

About the Role

We are looking for an experienced Senior Data Engineer to join a Data & Analytics (DnA) team. You will design, build, and operate production-grade data products across customer, commercial, financial, sales, and broader data domains. This role is hands-on and heavily focused on Databricks-based engineering, data quality, governance, and DevOps-aligned delivery.

You will work closely with the Data Engineering Manager, Product Owner, Data Product Manager, Data Scientists, Head of Data & Analytics, and IT teams to transform business requirements into governed, decision-grade datasets embedded in business processes and trusted for reporting, analytics, and advanced use cases.

Key Responsibilities

  • Design, build, and maintain pipelines in Databricks using Delta Lake and Delta Live Tables.
  • Implement medallion architectures (Bronze/Silver/Gold) and deliver reusable, discoverable data products.
  • Ensure pipelines meet non-functional requirements such as freshness, latency, completeness, scalability, and cost-efficiency.
  • Own and operate Databricks assets including jobs, notebooks, SQL, and Unity Catalog objects.
  • Apply Git-based DevOps practices, CI/CD, and Databricks Asset Bundles to safely promote changes across environments.
  • Implement monitoring, alerting, runbooks, incident response, and root-cause analysis.
  • Enforce governance and security using Unity Catalog (lineage, classification, ACLs, row/column-level security).
  • Define and maintain data-quality rules, expectations, and SLOs within pipelines.
  • Support root-cause analysis of data anomalies and production issues.
  • Partner with Product Owner, Product Manager, and business stakeholders to translate requirements into functional and non-functional delivery scope.
  • Collaborate with IT platform teams to define data contracts, SLAs, and schema evolution strategies.
  • Produce clear technical documentation (data contracts, source-to-target mappings, release notes).

Essential Skills & Experience:

  • 6+ years in data engineering or advanced analytics engineering roles.
  • Strong hands-on expertise in Python and SQL.
  • Proven experience building production pipelines in Databricks.
  • Excellent attention to detail, with the ability to create effective documentation and process diagrams.
  • Solid understanding of data modelling, performance tuning, and cost optimisation.

Desirable Skills & Experience:

  • Hands-on experience with Databricks Lakehouse, including Delta Lake and Delta Live Tables for batch/stream pipelines.
  • Knowledge of pipeline health monitoring, SLA/SLO management, and incident response.
  • Unity Catalog governance and security expertise, including lineage, table ACLs, and row/column-level security.
  • Familiarity with Databricks DevOps/DataOps practices (Git-based development, CI/CD, automated testing).
  • Performance and cost optimization strategies for Databricks (autoscaling, Photon/serverless, partitioning, Z-Ordering, OPTIMIZE/VACUUM).
  • Semantic layer and metrics engineering experience for consistent business metrics and self-service analytics.
  • Experience with cloud-native analytics platforms (preferably Azure) operating as enterprise-grade production services.